



La revue *Aleph. langues, médias et sociétés* est approuvée par ERIHPLUS. Elle est classée à la catégorie B.

Am I still the translator, or just a validator, a kind of a post editor of the text ?

هل ما زلتُ المُتّرجم، أم مجرّد مُراجِع، نوع من محرر لاحق للنص؟

Suis-je encore le traducteur, ou simplement un valideur, une sorte de post-éditeur du texte ?

Ilhem Bezzaoucha - UNIVERSITY OF ALGIERS 2

| ASJP<br>Algerian Scientific Journal Platform | Soumission | Publication numérique | Publication Asjp |
|----------------------------------------------|------------|-----------------------|------------------|
|                                              | 01-12-2024 | 19-05-2025            | 25-12-2025       |

**Éditeur :** Edile (Edition et diffusion de l'écrit scientifique)

**Dépôt légal :** 6109-2014

**Edition numérique :** <https://aleph.edinum.org>

**Date de publication :** 19 mai 2025

**ISSN :** 2437-1076

**(Edition ASJP) :** <https://www.asjp.cerist.dz/en/PresentationRevue/226>

**Date de publication :** 25 décembre 2025

**Pagination :** 169-184.

**ISSN :** 2437-0274

### Référence électronique

Ilhem Bezzaoucha, « Am I still the translator, or just a validator, a kind of a post editor of the text ? », Aleph [En ligne], Vol 12 (4-2) | 2025, mis en ligne le 19 mai 2025, consulté le 30 décembre 2025. URL : <https://aleph.edinum.org/14855>

### Référence papier

Ilhem Bezzaoucha, « Am I still the translator, or just a validator, a kind of a post editor of the text ? », Aleph, Vol 12 (4-2) | 2025, 169-184.



# Am I still the translator, or just a validator, a kind of a post editor of the text ?

هل ما زلتُ المُتّرجم، أم مجرّد مُراجِع، نوع من محرّر لاحق للنص؟

## Suis-je encore le traducteur, ou simplement un valideur, une sorte de post-éditeur du texte ?

ILHEM BEZZAOUCHA  
UNIVERSITY OF ALGIERS 2

### Introduction

In the realm of translation, there lies a delicate balance between tradition and innovation, where the age-old artistry of human interpretation intertwines with the boundless possibilities offered by modern technology. As we gaze into the proverbial mirror, seeking insight into the future of translation, we find ourselves pondering a fundamental question : *is my translation the fairest of them all?* This query encapsulates the essence of our exploration into the evolving landscape of translation, where the integration of artificial intelligence augments human expertise, shaping a new paradigm in linguistic expression.

This study explores the intersection where tradition meets innovation, where human insight meets technological advancement, and where the translator's discernment remains an invaluable beacon in the ever-changing seas of language.

### 1. Theoretical and Technological Foundations of Augmented Translation

#### 1.1. Augmented / Hybrid Translation

Augmented translation refers to the integration of artificial intelligence (AI) and advanced technologies into traditional translation methods. This evolving approach enhances human translators' capacities by offering tools that support efficiency, accuracy, and contextual awareness.

Through these systems, translators gain access to large linguistic databases, machine learning models, and natural language processing (NLP) features. Such tools assist in terminology management, contextual analysis, and quality control. They also offer translation suggestions based on previous corpora and language patterns.

As a result, translators can streamline repetitive tasks, allowing them to focus on the more nuanced and creative dimensions of language transfer. This

maintains human control over the final output while improving consistency and productivity. The model thus represents a major shift in translation workflows, blending human expertise with intelligent automation.

*According to CSA Research, augmented translation differs from traditional CAT tools by the degree of integration it allows. Translators no longer need to leave their working environment to consult external sources ; suggestions and semantic links are embedded in the interface itself, allowing more fluid decision-making.*

*Moreover, the translator remains central in the process, acting as the final authority while receiving support from contextual AI-based enhancements.*

— ATA, 2020

While the comparison to augmented reality (AR) tools is useful, it should not overshadow the distinct cognitive dimension involved in translation, which still requires human judgment, intercultural awareness, and ethical choices. Therefore, the notion of “augmentation” must be seen not merely as technical enhancement, but as a redefinition of collaboration between human and machine.

## **1.2. Augmented Translation and Cognitive Load**

Augmented translation, at its core, seeks to address the issue of cognitive load experienced by translators by integrating artificial intelligence (AI) and advanced technologies into the translation process.

Cognitive load — defined as the mental effort required to process information — poses significant challenges for translators. It affects comprehension, decision-making, and overall translation quality (Alicea, 2018). High cognitive demand can lead to fatigue, inconsistencies, and a reduction in productivity.

To mitigate this, augmented translation leverages AI-driven systems to assist with terminology management, context analysis, and quality control. These tools help streamline the translator’s workflow, enabling them to concentrate on higher-level linguistic and conceptual decisions. As a result, both efficiency and precision are improved (Stanney et al., 2015).

Importantly, this technological integration goes beyond mere automation. It actively supports and enhances human cognitive performance by offering adaptive interfaces and intelligent assistance tailored to the translator’s needs. In doing so, augmented translation does not replace the human mind, but rather amplifies its ability to manage complexity and reduce cognitive overload.

### 1.3. Limitations of Augmented Translation

Despite its promising potential, augmented translation faces several limitations that must be addressed to ensure its effective implementation.

Technical challenges—such as the accuracy and reliability of AI algorithms and neurophysiological sensors—still hinder seamless integration into diverse translation tasks (Raisamo et al., 2019). Moreover, the inherent complexity of translation, particularly when dealing with idiomatic expressions and cultural nuances, continues to resist full automation.

Another major challenge lies in balancing generalization and personalization within augmentation strategies. This involves sociotechnical and ethical concerns, as systems must adapt to individual preferences while remaining sensitive to cultural contexts.

Furthermore, there is a risk of over-reliance on AI-driven tools, which could gradually erode translator autonomy, reduce critical engagement, and limit creative interventions. Ethical concerns also arise regarding privacy, data protection, and algorithmic bias, which highlight the importance of transparency, accountability, and fairness in the design and deployment of augmented systems (O'Brien, 2023).

Ultimately, addressing these limitations calls for interdisciplinary collaboration and continuous research. A user-centered, ethically informed design is crucial to enhance the utility of augmented translation in real-world professional environments.

### 1.4. Traceability in Augmented Translation

In the realm of augmented translation, traceability serves as a cornerstone, ensuring transparency and accountability throughout the translation process. This concept is increasingly vital with the integration of artificial intelligence (AI) and advanced technologies, which are reshaping modern translation practices.

Augmented translation relies on AI-driven systems that use large datasets and machine learning algorithms to assist human translators. Within this framework, traceability functions as a mechanism to track the origin and evolution of translated content. It allows translators to review the decisions made by AI systems and to validate the accuracy and quality of outputs (Alicea, 2018).

Beyond mere oversight, traceability enables a continuous feedback loop. By carefully documenting each stage of the translation process—including

input data, algorithmic outputs, and human interventions—developers and researchers can identify points of failure, improve system design, and optimize the performance of translation tools (Raisamo et al., 2019).

Practically, implementing traceability requires the logging of translation activities : documenting the source text and its corresponding output, tracking the specific AI algorithms used, and recording the linguistic resources involved. Feedback from both translators and end-users further enriches this framework, offering valuable insight into usability, clarity, and performance (Stanney et al., 2015).

Importantly, traceability is more than a technical procedure—it reinforces trust and confidence in AI-assisted translation. By making the decision-making process transparent, it empowers translators and stakeholders to evaluate and maintain high standards of reliability and quality (Shneiderman, 2020a).

In conclusion, traceability emerges as a pivotal element of augmented translation. It guarantees not only transparency and accountability but also promotes continuous refinement and user confidence. Through detailed documentation and analysis, it strengthens both technological reliability and human trust (Shneiderman, 2020b).

## **2. Rethinking the Translator's Role**

### **2.1. Post-editing and Translation**

Augmented translation represents an advanced strategic framework that leverages the synergies between human linguistic expertise and cutting-edge computational technologies to address the exponential demand for high-quality multilingual content. Unlike traditional post-editing workflows, which typically position translators at the terminal phase of the production pipeline, augmented translation redefines their role by placing them at the core of an integrated technological constellation that extends and enhances their competencies.

This architecture encompasses a diverse array of technological innovations, including next-generation translation memory (TM) systems, adaptive neural machine translation (NMT) engines, automated content enrichment tools, AI-powered terminology management platforms, *lights-out* project management infrastructures, and microservices-oriented translation management systems (TMS). The convergence of these elements results in measurable gains in operational efficiency and cognitive relief for translators, who are empowered with contextually relevant information and freed to concentrate on linguistically and semantically complex segments.

Augmented translation constitutes a paradigm shift from the classical model of human-machine interaction in translation. In contrast to conventional post-editing, where human intervention merely rectifies the deficits of raw MT output, augmented workflows foster a *symbiotic environment* wherein both human and machine intelligences collaborate in real time. By embedding smart assistance at every stage of the translation process, augmented systems streamline production chains, raise consistency thresholds, and enable dynamic allocation of both human and algorithmic resources.

At the heart of this model lies the elevation of the translator to a decision-making agent operating within an augmented cognitive environment. Enhanced TM systems offer intelligent retrieval of aligned segments, context-aware suggestions, and semantic indexing, reducing lexical redundancy and reinforcing terminological consistency. Simultaneously, adaptive NMT engines—based on Transformer architectures—continuously learn from human feedback, refining their syntactic, stylistic, and pragmatic accuracy over iterative cycles.

Automated content enrichment tools, often based on natural language understanding (NLU) modules, integrate glossaries, ontologies, reference corpora, and contextual metadata directly into the translation interface. This enables in-context enhancement and minimizes the cognitive friction typically associated with manual research.

In parallel, advanced terminology management systems facilitate collaborative, cloud-based term validation, real-time harmonization across multilingual projects, and compliance with ISO 12616 and related industry standards. This promotes not only consistency but also interoperability between tools and users.

Lastly, *lights-out* project management frameworks and microservices-based TMS platforms automate the orchestration of translation workflows—from pre-processing and file handling to quality assurance and post-delivery reporting—thereby reducing human administrative overhead and maximizing the translator's engagement with high-value linguistic tasks.

## 2.2. How Augmented Translation Affects the Language Services Industry

Augmented translation is reshaping the language services industry by leveraging artificial intelligence (AI) to enhance access to contextual, linguistic, and terminological resources. This evolution empowers professional linguists to operate in technologically enriched environments that automate routine

tasks, allowing them to redirect their cognitive effort toward higher-order translation decisions and creative expression.

By providing targeted information at the point of need—through intelligent retrieval, predictive assistance, and real-time content enrichment—augmented translation streamlines production workflows, reduces redundancy, and enhances output consistency. This model shifts the translator's focus away from mechanical textual conversion and toward complex decision-making and stylistic refinement.

Forecasts indicate that augmented translation will play a strategic role in productivity optimization across the sector. Although widespread implementation remains emergent, existing platforms incorporating augmented features (such as adaptive NMT, collaborative TMS, and semantic alignment tools) report measurable gains in efficiency. These systems benefit from cumulative learning via translator corrections, project manager inputs, and client feedback loops.

A significant impact lies in the redefinition of the translator's role. Rather than being confined to post-editing or QA phases, translators become central agents in the workflow—orchestrating machine resources and actively shaping the final product. This transformation enhances both perceived value and professional agency, contributing to reduced cost-per-word ratios, improved translation throughput, and greater job satisfaction.

Importantly, augmented translation does not depend on speculative AI breakthroughs. Instead, it reconfigures existing technologies—such as translation memory, automated term recognition, and microservices-based workflow automation—into integrated systems that optimize performance. This pragmatic approach augments human expertise without displacing it, encouraging linguists to embrace tools that amplify their effectiveness.

For project management, the implications are equally transformative. Administrative operations (e.g., resource allocation, file handling, and task coordination) are increasingly automated, allowing managers to concentrate on customer interaction, workflow optimization, and strategic oversight.

This evolution mirrors the digital transformation seen in other knowledge sectors—for example, the rise of ERP systems in accounting, which shifted professionals from data entry roles to high-value advisory functions.

### **2.3. Charting the Future of Translators : Retranslate, Refine, or Validate**

As the field of translation continues to be reshaped by augmented technologies, the professional identity of translators evolves accordingly.

Central to this transformation is the emergence of three strategic roles translators may adopt: full retranslation, selective item retranslation, and final-stage validation. These modalities define new workflows in which human expertise remains indispensable.

1. Retranslation as iterative enhancement. In the context of augmented translation, full retranslation represents a dynamic approach to improving quality and responsiveness. Translators engage in continuous refinement cycles, adapting content based on feedback, stylistic shifts, or evolving cultural expectations. Leveraging machine learning and NLP modules, they iterate quickly, balancing computational suggestions with human judgment. This model reflects a commitment to ongoing quality assurance and responsiveness in multilingual communication.

2. Targeted retranslation of critical segments. Rather than modifying entire outputs, translators may focus on retranslating specific elements—terminology, idioms, cultural allusions, or stylistic inconsistencies. Augmented translation platforms facilitate this process by identifying segments with high error potential or low semantic fidelity through real-time analytics. This precision editing model maximizes efficiency while ensuring linguistic and cultural coherence.

3. Validation as a standard of excellence. Validation, as a terminal phase, ensures that translated content adheres to quality benchmarks—terminological accuracy, stylistic alignment, and cultural appropriateness. Translators perform comparative reviews, applying predefined standards and utilizing augmented tools for consistency checks, error detection, and metadata tracking. This process reinforces translator authority, safeguards brand identity, and enhances trust in AI-mediated content.

#### **2.4. Navigating the Future of Augmented Translation**

To navigate the future of augmented translation, translators must adopt a holistic and adaptive approach that integrates full retranslation, selective refinement, and rigorous validation. The successful translator of tomorrow will combine technical fluency with linguistic creativity, leveraging augmented tools not as substitutes, but as collaborative extensions of their expertise.

By combining the analytical capacities of machine learning systems with their own cultural intelligence, translators are uniquely positioned to produce output that is not only accurate but emotionally and contextually resonant. This hybrid model reaffirms the human translator's role as the arbiter of meaning in multilingual communication.

The future of translation work within augmented environments is thus defined by three pillars : agility in response to technological change, continuous skill development, and an unwavering commitment to quality and human connection. Whether retranslating full content, refining targeted segments, or validating final output, the translator remains a strategic actor—both augmented and augmenting—in the communication chain.

In embracing these evolving roles, translators demonstrate their relevance and reshape the profession not as a victim of automation, but as a driver of intercultural innovation in the digital age.

## **2.5. Hope Remains : The Role of Transcreation in Augmented Translation for Modern Translators**

In today's fast-evolving translation landscape—where automation, neural networks, and algorithmic tools increasingly shape workflows—**transcreation** emerges as a vital vector of human creativity and cultural resonance. As augmented translation becomes the new norm, transcreation offers translators a unique opportunity to reaffirm their role as interpreters not only of language but of meaning, emotion, and context. The following paragraphs outline the key functions and strategic relevance of transcreation in the age of augmented translation :

1. Transcreation as cultural adaptation within augmented translation.  
In the context of technologically mediated translation, transcreation refers to the creative adaptation of content to ensure cultural, emotional, and communicative resonance. Far from literal equivalence, it aims to preserve the intent, tone, and impact of the source message while making it fully meaningful in the target culture. Augmented translation tools provide transcreators with rich contextual resources—reference corpora, sentiment analysis, stylistic prompts—that allow them to navigate the linguistic-cultural interface with precision and fluidity.
2. Enabling creative freedom and professional agency. Transcreation empowers translators to step beyond rigid textual equivalence and assert their role as creative agents. In contrast to purely functional translation or mechanical post-editing, transcreation invites emotional intelligence, cultural intuition, and stylistic finesse. Augmented translation platforms enhance this process by supporting exploratory drafts, real-time collaboration with clients, and stylistic pattern recognition—turning translators into co-authors of communication.

3. Navigating cultural complexity with strategic sensitivity. In multilingual, multicultural environments, cultural missteps can dilute or distort meaning. Transcreators are trained to navigate cultural markers, taboos, idioms, and symbolic systems. Within augmented environments, where user interfaces, marketing strategies, and interactive narratives coexist, the translator's task is to recalibrate messaging with cultural granularity, often in real time. This task requires both technological competence and a refined understanding of cross-cultural semiotics.
4. Fostering collaboration and embracing innovation. Effective transcreation operates at the intersection of collaborative practice and technological innovation. Transcreators work closely with copywriters, UX designers, and clients to align transcreated content with branding objectives and audience expectations. Simultaneously, they adopt intelligent tools—NLP modules, machine-learning feedback loops, predictive editing assistants—that augment their decisions without replacing their voice.
5. Shaping the future of global communication. In an industry increasingly driven by metrics, automation, and turnaround times, transcreation reintroduces human intentionality and creativity as essential pillars. By enabling emotionally resonant and culturally tailored messaging, transcreation ensures that brands, products, and narratives retain their identity across borders. For translators willing to embrace augmented tools, transcreation offers a pathway to relevance, sustainability, and creative fulfillment in the future of language services.

### **3. Creativity, Ethics, and Cultural Responsibility**

#### **3.1. Ethical Considerations**

Ethical considerations in augmented translation concern the intricate interplay between technological innovation, linguistic integrity, and cultural sensitivity (Alicea, 2018). As artificial intelligence (AI) and machine learning (ML) increasingly permeate translation workflows, translators and stakeholders must confront a range of ethical challenges that demand critical attention and proactive governance.

To address the ethical challenges posed by augmented translation, several key considerations must be explicitly articulated. These include :

1. Transparency and accountability. As AI-powered translation systems become ubiquitous, it is imperative that their inner workings remain transparent. Translators and end-users must understand the algorithms involved, the nature of the data used for training, and the biases potentially embedded within the models (Shneiderman, 2020a ; 2020b). Transparent systems enable informed decision-making, enhance trust, and uphold standards of accuracy and professional integrity.
2. Data ownership and linguistic sovereignty. As translators interact with AI systems—contributing feedback, corrections, and linguistic metadata—they inadvertently enrich machine learning models. This raises fundamental questions about data ownership : Who owns the final translations ? Who benefits from the accumulated linguistic knowledge ? Translators must advocate for fair attribution, compensation, and robust safeguards for the confidentiality of sensitive content (Raisamo et al., 2019).
3. Bias, inclusion, and cultural representation. AI systems reflect the data on which they are trained. If that data is biased or incomplete, the resulting translations may perpetuate stereotypes or marginalize underrepresented groups. Ensuring cultural inclusivity and linguistic equity requires critical scrutiny of training corpora and deliberate efforts to represent diverse languages, dialects, and perspectives (Stanney et al., 2015).
4. Labor, automation, and professional agency. As AI systems increasingly automate translation tasks, concerns arise about the deskilling of human translators and potential job displacement. Ethical deployment of augmented translation must prioritize the preservation of translator agency, dignity, and expertise. Translators should be viewed not as replaceable operators but as co-designers and decision-makers within the human-machine partnership (Alicea, 2018).
5. Linguistic diversity and cultural heritage. Standardized AI outputs can lead to the homogenization of language, marginalizing regional variations and low-resource languages. Ethical translation technology must therefore support the preservation and promotion of linguistic diversity, enabling tools that cater to endangered or culturally significant languages and dialects (Raisamo et al., 2019).

6. Shared responsibility and continuous review. Augmented translation introduces shared accountability between human and machine. Translators must critically evaluate AI-generated output, conduct quality assurance, and provide feedback to improve system performance. At the same time, developers and organizations bear responsibility for system design that aligns with ethical and linguistic standards (Stanney et al., 2015).

In conclusion, ethical considerations are not peripheral but central to the design and implementation of augmented translation systems. Upholding principles of transparency, inclusivity, fairness, and linguistic sovereignty is essential to ensure that technological progress does not compromise human values. By engaging with these ethical imperatives, translators can actively contribute to shaping an augmented translation ecosystem that is both technologically advanced and ethically sound.

### **3.2. To Be or Not to Be : That Is the Question**

In the context of augmented reality (AR) and its intersection with translation, the existential question of “*to be or not to be*” acquires renewed significance. Within this digitally enhanced environment, the translator assumes a hybrid ontological role, navigating the convergence of physical and virtual realities. AR blurs the boundaries between materiality and simulation, raising profound questions about identity, presence, and the translator’s agency.

At the core of this reflection lies the translator’s function as a mediator of meaning—not only across languages and cultures, but also between distinct ontological states. In AR, their work extends beyond conventional linguistic interpretation to include contextual adaptation of overlaid digital content within a real-world setting. The translator thus operates as a curator of hybrid experiences, harmonizing multimodal, spatial, and interactive layers of information.

AR introduces complexities that surpass traditional translation frameworks. With real-time data integration and dynamic user interfaces, the translator must process both linguistic and extralinguistic cues—cultural references, spatial orientations, and user interaction patterns—becoming an arbiter of embodied and contextual coherence.

Moreover, the translator’s professional identity itself is redefined in this liminal space. Occupying a position at the intersection of the tangible and the virtual, they embody a form of digital presence grounded not in

physical embodiment but in functional relationality. This fluidity challenges conventional notions of authorship, responsibility, and authenticity.

Such a transformation is not without its existential dilemmas. As AR modifies the very fabric of perceived reality, the translator must contend with questions of truth, legitimacy, and *authentic mediation*. Is the AR-enhanced world as “real” as the physical one ? What constitutes fidelity in environments where meaning is co-constructed by code, user behavior, and cultural perception ?

Compounding these challenges is the rise of AI and automated translation tools, which increasingly intrude into augmented spaces. While these technologies offer speed and accessibility, they risk bypassing the depth and nuance that human translation provides. In this context, the translator is confronted with the possibility of obsolescence—or, conversely, with the opportunity to assert the irreplaceability of human empathy and interpretation.

It is precisely in their capacity for empathy, cultural intuition, and human connection that translators maintain their relevance. They serve not merely as conduits of language, but as bridges of understanding, capable of reconciling digital abstraction with lived human experience. As Munday (2016) reminds us, the affective and interpretive labor of translators cannot be automated.

In conclusion, the translator’s journey through augmented reality is a profoundly existential undertaking. It redefines their role, not only as linguistic experts, but as agents of meaning, embodiment, and human connection. As they traverse the hybrid topographies of AR, they reaffirm the enduring value of translation as an act of presence, ethics, and relationality in a technologically mediated world.

### **3.3. Prospects**

The emergence of augmented translation marks a transformative phase in the evolution of language services. This approach capitalizes on the synergistic interaction between human cognitive capacities and state-of-the-art technological frameworks to revolutionize translation workflows. The result is enhanced productivity, improved quality assurance, and elevated strategic value across multilingual content operations.

Augmented translation diverges from traditional paradigms by positioning professional translators not as passive validators but as central agents in a networked environment of intelligent systems. Each component—be it algorithmic, linguistic, or managerial—is designed to augment human performance without diminishing autonomy.

At its foundation, augmented translation optimizes process efficiency by leveraging the respective strengths of human insight and machine computation. While human translators contribute linguistic expertise, intercultural competence, and stylistic sensitivity, computational tools offer scalability, data-driven consistency, and real-time access to context-sensitive information.

Advanced translation memory systems facilitate reusability and alignment, reducing redundancy and ensuring terminological fidelity. In parallel, adaptive neural machine translation (NMT) models—trained through continuous post-editing feedback—adjust to user-specific preferences and develop stylistic convergence over time.

Augmented frameworks also support semantic enrichment, integrating glossaries, ontologies, reference corpora, and terminology databases into the translator's working interface. This not only accelerates decision-making but improves semantic precision by anchoring translations in verified linguistic knowledge.

Next-generation terminology management platforms further reinforce lexical standardization through real-time collaborative validation and centralized resource governance. These tools are often compliant with ISO 26162 and similar terminology standards, ensuring coherence across large-scale multilingual projects.

From an operational standpoint, *lights-out* project management systems and modular TMS infrastructures automate non-linguistic tasks such as job scheduling, file routing, and quality assurance. This enables translators to focus exclusively on semantically complex and cognitively demanding segments, elevating the intellectual quality of their interventions.

In essence, augmented translation constitutes a comprehensive translational paradigm, merging automation and human expertise into a unified, adaptive system. By placing human translators in a co-pilot role within an ecosystem of advanced tools, this model promises increased output quality, operational agility, and knowledge scalability.

## Conclusion

In the age of augmented translation, the translator is no longer a passive post-editor or final validator. Rather, they emerge as a strategic orchestrator, empowered by cutting-edge technologies to craft linguistic output that is both functionally precise and culturally resonant.

This paradigm repositions the translator as a central figure in technologically mediated communication, navigating a landscape where artificial intelligence, automation, and data-driven insights serve not to replace human expertise, but to enhance it. In this ecosystem, translators guide content through complex workflows, ensuring that the final output aligns with semantic, stylistic, and cultural expectations.

Far from being mere operators of digital tools, translators become architects of linguistic innovation. They synthesize machine-generated suggestions with cultural knowledge, contextual awareness, and creative intuition—delivering translations that are not only accurate but also meaningful and compelling.

At its core, augmented translation reaffirms the enduring value of human linguistic expertise, augmented by, but not subordinated to, technology. It invites a shift from correction to co-creation, from repetition to refinement, and from reactive intervention to strategic authorship.

In conclusion, the future of translation belongs to those who can embrace this hybrid identity—translator-technologists, who merge analytical precision with narrative insight. As they adopt and adapt these evolving tools, translators are not merely responding to change—they are helping to lead it, shaping a future where human and machine collaborate to elevate the art of translation.

## **Bibliography**

Alicea, B. (2018). *An integrative introduction to human augmentation science*. arXiv. <https://arxiv.org/pdf/1804.10521.pdf>

O'Brien, S. (2023). Human-centered augmented translation : Against antagonistic dualisms. *Perspectives*, 1(1), 1–16. <https://doi.org/10.1080/0907676X.2023.2247423>

Raisamo, R., Rakkolainen, I., Majaranta, P., Salminen, K., Rantala, J., & Farooq, A. (2019). Human augmentation : Past, present and future. *International Journal of Human-Computer Studies*, 131, 131–143. <https://doi.org/10.1016/j.ijhcs.2019.05.008>

Shneiderman, B. (2020a). Human-centered artificial intelligence : Three fresh ideas. *AIS Transactions on Human-Computer Interaction*, 12(3), 109–124. <https://doi.org/10.17705/1thci.00131>

Shneiderman, B. (2020b). Bridging the gap between ethics and practice : Guidelines for reliable, safe, and trustworthy human-centered AI systems. *ACM Transactions on Interactive Intelligent Systems*, 10(4), 1–31. <https://doi.org/10.1145/3419764>

Stanney, K., Winslow, B., Hale, K., & Schmorow, D. (2015). Augmented cognition. In D. A. Boehm-Davis, F. T. Durso, & J. D. Lee (Eds.), *APA handbook of human systems integration* (pp. 329–343). American Psychological Association.

Zetzsche, J. (n.d.). *Translation matters : A collection of 81 essays about translators and translation technology*. [Contact : [jzetsche@internationalwriters.com](mailto:jzetsche@internationalwriters.com)].

---

## Abstract

Augmented translation does not aim to replace human translators but to amplify their capabilities through access to extensive contextual data. By leveraging large linguistic corpora, translators can trace how specific terms and expressions have been previously rendered, analyse translation frequency across thematic domains, and assess usage patterns. This level of traceability surpasses human capacity and highlights the need for AI integration in collaboration with human expertise. The translator's role thus evolves into that of a linguistic gatekeeper—filtering, curating, and refining content while safeguarding authorship and semantic integrity. Rather than diminishing human contribution, augmented translation enables translators to focus on higher-order tasks, reinforcing their indispensable role in multilingual communication.

---

## Keywords

augmented translation ; hybrid translation ; cognitive load ; traceability ; technological limitations.

---

### ملخص

لا يهدف الترجمة المعززة إلى استبدال المתרגمين البشر، بل إلى تعزيز قدراتهم من خلال إتاحة بيانات سياقية موسعة. ومن خلال الاعتماد علىمجموعات لغوية ضخمة، يستطيع المترجمون تتبع كيفية ترجمة المصطلحات والعبارات سابقاً، وتحليل تواتر استخدامها ضمن مجالات موضوعية، وتقدير أنماط الاستعمال. ويُعد هذا المستوى من إمكانية التتبع متقدماً لدرجة تتجاوز قدرات الإنسان، مما يؤكد على ضرورة دمج أدوات الذكاء الاصطناعي بالتعاون مع الكفاءات البشرية. وهكذا، يتحول دور المترجم إلى دور "القيم اللغوي" الذي يُصفّي النصوص ويدقّقها ويحافظ على جوهر المعنى وسلامة الرسالة الأصلية. لا تُقلص الترجمة المعززة من دور المترجم، بل تُمكّنه من التركيز على المهام المعقدة، مما يعزّز أهميته في بيئة الاتصال متعددة اللغات.

---

### الكلمات الرئيسية

الترجمة المعززة؛ الترجمة الهجينة؛ الحمل المعرفي؛ إمكانية التتبع؛ القيود التقنية.

---

## Résumé

La traduction augmentée n'a pas pour objectif de remplacer les traducteurs humains, mais de renforcer leurs compétences en leur offrant un accès élargi à des données contextuelles. En exploitant de vastes corpus linguistiques, les traducteurs peuvent retracer la manière dont certains termes ou expressions ont été traduits dans des contextes similaires, analyser la fréquence de ces traductions, et évaluer les usages lexicaux. Ce niveau de traçabilité, qui dépasse les capacités humaines, rend nécessaire l'intégration d'outils d'intelligence ar-

tificielle en complément de l'expertise humaine. Le rôle du traducteur évolue ainsi vers celui de médiateur linguistique, chargé de filtrer, ajuster et valider les contenus tout en préservant l'intention d'auteur. Loin de réduire sa contribution, la traduction augmentée lui permet de se concentrer sur des tâches à forte valeur ajoutée, consolidant ainsi sa place dans l'écosystème de la communication multilingue.

---

### **Mots-clés**

---

traduction augmentée ; traduction hybride ; charge cognitive ; traçabilité ; limites technologiques.